西亚试剂优势供应上万种化学试剂产品,欢迎各位新老客户咨询、选购!

登录

¥0.00

联系方式:400-990-3999 / 邮箱:sales@xiyashiji.com

西亚试剂 —— 品质可靠,值得信赖

西亚试剂:Directional tissue migration through a self-generated chemo

Directional tissue migration through a self-generated chemokine gradient

Erika Dona,Joseph D. Barry,Guillaume Valentin,Charlotte Quirin,Anton Khmelinskii,Andreas Kunze,Sevi Durdu,Lionel R. Newton,Ana Fernandez-Minan,Wolfgang Huber,Michael Knop& Darren Gilmour

The directed migration of cell collectives is a driving force of embryogenesis1, 2, 3. The predominant view in the field is that cells in embryos navigate along pre-patterned chemoattractant gradients2. One hypothetical way to free migrating collectives from the requirement of long-range gradients would be through the self-generation of local gradients that travel with them4, 5, a strategy that potentially allows self-determined directionality. However, a lack of tools for the visualization of endogenous guidance cues has prevented the demonstration of such self-generated gradients in vivo. Here we define the in vivo dynamics of one key guidance molecule, the chemokine Cxcl12a, by applying a fluorescent timer approach to measure ligand-triggered receptor turnover in living animals. Using the zebrafish lateral line primordium as a model, we show that migrating cell collectives can self-generate gradients of chemokine activity across their length via polarized receptor-mediated internalization. Finally, by engineering an external source of the atypical receptor Cxcr7 that moves with the primordium, we show that a self-generated gradient mechanism is sufficient to direct robust collective migration. This study thus provides, to our knowledge, the first in vivo proof for self-directed tissue migration through local shaping of an extracellular cue and provides a framework for investigating self-directed migration in many other contexts including cancer invasion6.